Graph Encoding and Transitive Closure Representation

Author:

Chen Yangjun1

Affiliation:

1. University of Winnipeg, Canada

Abstract

Composite objects represented as directed graphs are an important data structure that require efficient support Web and document databases (Abiteboul, Cluet, Christophides, Milo, Moerkotte, & Simon, 1997; Chen & Aberer, 1998, 1999; Mendelzon, Mihaila, & Milo, 1997; Zhang, Naughton, Dewitt, Luo, & Lohman, 2001), CAD/ CAM, CASE, office systems, and software management. It is cumbersome to handle such objects in relational database systems when they involve ancestor-descendant relations (or say, reachability relations). In this article, we present a new graph encoding based on a tree labeling method and the concept of branchings that are used in the graph theory for finding the shortest connection networks. A branching is a subgraph of a given digraph that is in fact a forest, but covers all the nodes of the graph. Concretely, for a DAG G (directed acyclic graph) of n nodes, the space needed for storing its transitive closure can be reduced to O(b·n), where b is the number of the leaf nodes of G’s branching. Such a compression is, however, at the expense of querying time. Theoretically, it takes O(logb) time to check whether a node is reachable from another. The method can also be extended to digraphs containing cycles.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3