OMACS

Author:

DeLoach Scott A.1

Affiliation:

1. Kansas State University, USA

Abstract

This chapter introduces a suite of technologies for building complex, adaptive systems. It is based in the multi-agent systems paradigm and uses the Organization Model for Adaptive Computational Systems (OMACS). OMACS defines the knowledge needed about a system’s structure and capabilities to allow it to reorganize at runtime in the face of a changing environment and its agent’s capabilities. However, the OMACS model is only useful if it is supported by a set of methodologies, techniques, and architectures that allow it to be implemented effectively on a wide variety of systems. To this end, this chapter presents a suite of technologies including (1) the Organization-based Multiagent Systems Engineering (O-MaSE) methodology, (2) a set of policy specification techniques that allow an OMACS system to remain flexible while still providing guidance, and (3) a set of architectures and algorithms used to implement OMACSbased systems. The chapter also includes the presentation of a small OMACS-based system.

Publisher

IGI Global

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Goal-Driven Adversarial Search for Distributed Self-Adaptive Systems;2023 IEEE International Conference on Software Services Engineering (SSE);2023-07

2. Towards Antifragility in Contested Environments: Using Adversarial Search to Learn, Predict, and Counter Open-Ended Threats;2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS);2022-09

3. A graph transformation based approach for multi-agent systems reorganization;Multiagent and Grid Systems;2020-02-10

4. Role-Based Modeling for Designing Agent Behavior in Self-Organizing Multi-Agent Systems;International Journal of Software Engineering and Knowledge Engineering;2018-01

5. A Framework for Developing and Using Shared Mental Models in Human-Agent Teams;Journal of Cognitive Engineering and Decision Making;2017-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3