Online Testing of Nondeterministic Systems with the Reactive Planning Tester

Author:

Vain Jüri1,Kääramees Marko1,Markvardt Maili1

Affiliation:

1. Tallinn University of Technology, Estonia

Abstract

We describe a model-based construction of an online tester for black-box testing. Contemporary model-based online test generators focusing mainly on computationally cheap but far from optimal planning strategies cover just a fraction of the wide spectrum of test control strategies. Typical examples of those used are simple random choice and anti-ant. Exhaustive planning during online testing of nondeterministic systems looks out of reach because of the low scalability of the methods in regard to the model size. The reactive planning tester (RPT) studied in this chapter is targeted to fill the gap between these two extremes. The key idea of RPT lies in offline static analysis of the IUT (implementation under test) model to prepare the data and constraints for efficient online reactive planning. The external behavior of the IUT is modelled as an output observable nondeterministic EFSM (extended finite state machine) with the assumption that all the transition paths are feasible. A test purpose is attributed to the transitions of the IUT model by a set of Boolean variables called traps that are used to measure the progress of the test run. We present a way to construct a tester that at runtime selects a suboptimal test path from trap to trap by finding the shortest path that covers unvisited traps within planning horizon. The principles of reactive planning are implemented in the form of the decision rules of selecting the shortest paths at runtime. Based on an industrial scale case study, namely the city lighting system controller, we demonstrate the practical use of the RPT for systems with high degree of nondeterminism, deep nested control loops, and requiring strictly bounded tester response time. Tuning the planning horizon of the RPT allows a trade-off to be found between close to optimal test length and scalability of tester behavior with computationally feasible expenses.

Publisher

IGI Global

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TestIt: an Open-Source Scalable Long-Term Autonomy Testing Toolkit for ROS;2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT);2019-06

2. Model Based Test Framework for Communications-Critical Internet of Things Systems;FRONT ARTIF INTEL AP;2019

3. Energy-Efficient Multi-fragment Markov Model Guided Online Model-Based Testing for MPSoC;Green IT Engineering: Social, Business and Industrial Applications;2018-09-30

4. Model Based Approach for Testing: Distributed Real-Time Systems Augmented with Online Monitors;Communications in Computer and Information Science;2018

5. Automatic Distribution of Local Testers for Testing Distributed Systems;FRONT ARTIF INTEL AP;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3