Semi-Fragile Image Watermarking, Authentication and Localization Techniques for Law Enforcement Applications

Author:

Zhao Xi1,Ho Anthony T.S.1

Affiliation:

1. University of Surrey, UK

Abstract

With the tremendous growth and use of digital cameras and video devices, the need to verify the collected digital content for law enforcement applications such as crime scene investigations and traffic violations, becomes paramount if they are to be used as evidence in courts. Semi-fragile watermarking has become increasingly important within the past few years as it can be used to verify the content of images by accurately localising the tampered area and tolerating some non-malicious manipulations. There have been a number of different transforms used for semi-fragile image watermarking. In this chapter, we present two novel transforms for semi-fragile watermarking, using the Slant transform (SLT) as a block-based algorithm and the wavelet-based contourlet transform (WBCT) as a non-block based algorithm. The proposed SLT is compared with existing DCT and PST semi-fragile watermarking schemes. Experimental results using standard test images and simulated law enforcement images indicate that the SLT is more accurate for copy and paste attacks with non-malicious manipulations, such as additive Gaussian noise. For the proposed WBCT method, watermarking embedding is performed by modulating the parent-children relationship in the contourlet domain. Again, experimental results using the same test images have demonstrated that our proposed WBCT method achieves good performances in localising the tampered regions, even when the image has been subjected to non-malicious manipulations such as JPEG/JPEG2000 compressions, Gaussian noise, Gaussian filtering, and contrast stretching. The average miss detection rate is found to be approximately 1% while maintaining an average false alarm rate below 6.5%.

Publisher

IGI Global

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3