Geographic Routing of Sensor Data around Voids and Obstacles

Author:

Nikoletseas Sotiris1,Powell Olivier2,Rolim Jose2

Affiliation:

1. University of Patras, Greece

2. University of Geneva, Switzerland

Abstract

Geographic routing is becoming the protocol of choice for many sensor network applications. Some very efficient geographic routing algorithms exist, however they require a preliminary planarization of the communication graph. Planarization induces overhead which makes this approach not optimal when lightweight protocols are required. On the other hand, georouting algorithms which do not rely on planarization have fairly low success rates and either fail to route messages around all but the simplest obstacles or have a high topology control overhead (e.g. contour detection algorithms). This chapter describes the GRIC algorithm which was designed to overcome some of those limitations. The GRIC algorithm was proposed in (Powell & Nikoletseas, 2007a). It is the first lightweight and efficient on demand (i.e. all-to-all) geographic routing algorithm which does not require planarization, has almost 100% delivery rates (when no obstacles are added), and behaves well in the presence of large communication blocking obstacles.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3