Parallel Hardware for Artificial Neural Networks Using Fixed Floating Point Representation

Author:

Nedjah Nadia1,Martins da Silva Rodrigo1,Mourelle Luiza de Macedo1

Affiliation:

1. State University of Rio de Janeiro, Brazil

Abstract

Artificial Neural Networks (ANNs) is a well known bio-inspired model that simulates human brain capabilities such as learning and generalization. ANNs consist of a number of interconnected processing units, wherein each unit performs a weighted sum followed by the evaluation of a given activation function. The involved computation has a tremendous impact on the implementation efficiency. Existing hardware implementations of ANNs attempt to speed up the computational process. However, these implementations require a huge silicon area that makes it almost impossible to fit within the resources available on a state-of-the-art FPGAs. In this chapter, a hardware architecture for ANNs that takes advantage of the dedicated adder blocks, commonly called MACs, to compute both the weighted sum and the activation function is devised. The proposed architecture requires a reduced silicon area considering the fact that the MACs come for free as these are FPGA’s built-in cores. Our system uses integer (fixed point) mathematics and operates with fractions to represent real numbers. Hence, floating point representation is not employed and any mathematical computation of the ANN hardware is based on combinational circuitry (performing only sums and multiplications). The hardware is fast because it is massively parallel. Besides, the proposed architecture can adjust itself on-the-fly to the user-defined configuration of the neural network, i.e., the number of layers and neurons per layer of the ANN can be settled with no extra hardware changes. This is a very nice characteristic in robot-like systems considering the possibility of the same hardware may be exploited in different tasks. The hardware also requires another system (a software) that controls the sequence of the hardware computation and provides inputs, weights and biases for the ANN in hardware. Thus, a co-design environment is necessary.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3