Forecasting Supply Chain Demand Using Machine Learning Algorithms

Author:

Carbonneau Réal1,Vahidov Rustam2,Laframboise Kevin2

Affiliation:

1. Department of Management Sciences, HEC Montréal, Canada

2. John Molson School of Business, Concorida University, Canada

Abstract

Managing supply chains in today’s complex, dynamic, and uncertain environment is one of the key challenges affecting the success of the businesses. One of the crucial determinants of effective supply chain management is the ability to recognize customer demand patterns and react accordingly to the changes in face of intense competition. Thus the ability to adequately predict demand by the participants in a supply chain is vital to the survival of businesses. Demand prediction is aggravated by the fact that communication patterns between participants that emerge in a supply chain tend to distort the original consumer’s demand and create high levels of noise. Distortion and noise negatively impact forecast quality of the participants. This work investigates the applicability of machine learning (ML) techniques and compares their performances with the more traditional methods in order to improve demand forecast accuracy in supply chains. To this end we used two data sets from particular companies (chocolate manufacturer and toner cartridge manufacturer), as well as data from the Statistics Canada manufacturing survey. A representative set of traditional and ML-based forecasting techniques have been applied to the demand data and the accuracy of the methods was compared. As a group, Machine Learning techniques outperformed traditional techniques in terms of overall average, but not in terms of overall ranking. We also found that a support vector machine (SVM) trained on multiple demand series produced the most accurate forecasts.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3