Analyzing the Text of Clinical Literature for Question Answering

Author:

Niu Yun1,Hirst Graeme2

Affiliation:

1. Ontario Cancer Institute, Canada

2. University of Toronto, Canada

Abstract

The task of question answering (QA) is to find an accurate and precise answer to a natural language question in some predefined text. Most existing QA systems handle fact-based questions that usually take named entities as the answers. In this chapter, the authors take clinical QA as an example to deal with more complex information needs. They propose an approach using Semantic class analysis as the organizing principle to answer clinical questions. They investigate three Semantic classes that correspond to roles in the commonly accepted PICO format of describing clinical scenarios. The three Semantic classes are: the description of the patient (or the problem), the intervention used to treat the problem, and the clinical outcome. The authors focus on automatic analysis of two important properties of the Semantic classes.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping the Bibliometrics Landscape of AI in Medicine: Methodological Study (Preprint);2023-01-20

2. Design and Implementation of Medical QA System using Machine Learning Techniques;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2021-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3