Grid Computing in 3D Electron Microscopy Reconstruction

Author:

Bilbao Castro J.R.1,Garcia Fernandez I.1,Fernandez J.1

Affiliation:

1. University of Almeria, Spain

Abstract

Three-dimensional electron microscopy allows scientists to study biological specimens and to understand how they behave and interact with each other depending on their structural conformation. Electron microscopy projections of the specimens are taken from different angles and are processed to obtain a virtual three-dimensional reconstruction for further studies. Nevertheless, the whole reconstruction process, which is composed of many different subtasks from the microscope to the reconstructed volume, is not straightforward nor cheap in terms of computational costs. Different computing paradigms have been applied in order to overcome such high costs. While classic parallel computing using mainframes and clusters of workstations is usually enough for average requirements, there are some tasks which would fit better into a different computing paradigm – such as grid computing. Such tasks can be split up into a myriad of subtasks, which can then be run independently using as many computational resources as are available. This chapter explores two of these tasks present in a typical three-dimensional electron microscopy reconstruction process. In addition, important aspects like fault-tolerance are widely covered; given that the distributed nature of a grid infrastructure makes it inherently unstable and difficult to predict.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3