Grid Analysis of Radiological Data

Author:

Germain-Renaud Cecile1,Breton Vincent2,Clarysse Patrick3,Delhay Bertrand3,Gaudeau Yann4,Glatard Tristan5,Jeannot Emmanuel6,Legre Yannick7

Affiliation:

1. CNRS, France

2. CNRS Clermont-Ferrand, France

3. INSA-Lyon, France

4. CNRS Strasbourg, France

5. Universite de Lyon CREATIS-LRMN, France

6. Universite Henri Poincare, France

7. Université Blaise Pascal, France

Abstract

Grid technologies and infrastructures can contribute to harnessing the full power of computer-aided image analysis into clinical research and practice. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. This chapter reports on the goals, achievements and lessons learned from the AGIR (Grid Analysis of Radiological Data) project. AGIR addresses this challenge through a combined approach. On one hand, leveraging the grid middleware through core grid medical services (data management, responsiveness, compression, and workflows) targets the requirements of medical data processing applications. On the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical use cases both exploits and drives the development of the services.

Publisher

IGI Global

Reference64 articles.

1. Data management and transfer in high-performance computational grid environments

2. Aloiso, G., Benkner, S., Bilofsky, H., Blanquer Espert, I., Breton, V., Cannataro, M., et al. (2005). HealthGrid White Paper. Retrieved from http://whitepaper.healthgrid.org.

3. Atkins, D. (2003). Report of Blue-Ribbon Advisory Panel on Cyberinfrastructure. Retrieved from http://www.nsf.gov/publications

4. Proportionate progress: A notion of fairness in resource allocation

5. Basu, S., Talwar, V., Agarwalla, B., & Kuma, R. (2003). Interactive Grid Architecture for Application Service Providers (HP Technical Report HPL-2003-84R1).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective Reinforcement Learning for Responsive Grids;Journal of Grid Computing;2010-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3