Aspects of Visualization and the Grid in a Biomedical Context

Author:

Greenshields Ian1,El-Sayed Gamal1

Affiliation:

1. University of Connecticut, USA

Abstract

This chapter introduces some aspects of visualization and the grid. Visualization --the art and science of representing data visually-- is now recognized as an equal partner in the conduct of science via the simulation and modeling paradigm. Although not usually associated with Grid-scale problems, there are a number of Grid-dominant issues which subtend visualization. Evidently, certain data grooming issues (e.g., image preprocessing/analysis, certain computational geometric processes, certain computational topological processes) are amenable to deployment over compute Grids, but there has been equal focus on the collaborative aspect of Grid computing which is driving collaboration-based visualization systems. Here we survey some of the roles of visualization as they relate to the role of Grid computing within a biomedical context. We conclude by examining certain scheduling strategies we believe to have value in terms of the distribution of visualization tasks over Grid fabrics.

Publisher

IGI Global

Reference54 articles.

1. Achlioptas, D. (2001). Database Friendly Random Projections. Proc. Symposium on Principals of Database Systems (PODS01), (pp. 274-281).

2. AG. The Access Grid. Retrieved from http://www.accessgrid.org/

3. Ahrens, J., Law, C., Schroeder, W., Martin, K., & Papka, M. (2000). A Parallel Approach for Visualizing Extremely Large, Time-Varying Datasets(Tech. Rep. LAUR-00-1620). Los Alamos, NM: Los Alamos National Laboratory. Retrieved from http://www.vtk.org/pdf/pvtk.pdf

4. Ammar, R. A., Demurjian, S. A., Greenshields, I. R., Pattipatti, K., & Rajasekaran, S. (2005). Analysis of Heterogeneous Data in Ultrahigh Dimensions. In R. Popp and J. Yen (Eds.), Emergent Information Technologies and Enabling Policies for Counter-Terrorism, (pp. 105-124). Hoboken, NJ: Wiley Interscience.

5. Azencott, R. (1988). Simulated Annealing. Seminaire Bourbaki 40eme annee, 1987-88, No. 697, (pp. 223-237).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3