Discovering Semantics from Visual Information

Author:

Wang Zhiyong1,Feng Dagan2

Affiliation:

1. University of Sydney, Australia

2. University of Sydney, Australia & Hong Kong Polytechnic University, China

Abstract

Visual information has been immensely used in various domains such as web, education, health, and digital libraries, due to the advancements of computing technologies. Meanwhile, users realize that it has been more and more difficult to find desired visual content such as images. Though traditional content-based retrieval (CBR) systems allow users to access visual information through query-by-example with low level visual features (e.g. color, shape, and texture), the semantic gap is widely recognized as a hurdle for practical adoption of CBR systems. Wealthy visual information (e.g. user generated visual content) enables us to derive new knowledge at a large scale, which will significantly facilitate visual information management. Besides semantic concept detection, semantic relationship among concepts can also be explored in visual domain, other than traditional textual domain. Therefore, this chapter aims to provide an overview of the state-of-the-arts on discovering semantics in visual domain from two aspects, semantic concept detection and knowledge discovery from visual information at semantic level. For the first aspect, various aspects of visual information annotation are discussed, including content representation, machine learning based annotation methodologies, and widely used datasets. For the second aspect, a novel data driven based approach is introduced to discover semantic relevance among concepts in visual domain. Future research topics are also outlined.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3