Adaptive Algorithms for Intelligent Geometric Computing

Author:

Gavrilova M. L.1

Affiliation:

1. University of Calgary, Canada

Abstract

This chapter spans topics from such important areas as Artificial Intelligence, Computational Geometry and Biometric Technologies. The primary focus is on the proposed Adaptive Computation Paradigm and its applications to surface modeling and biometric processing. Availability of much more affordable storage and high resolution image capturing devices have contributed significantly over the past few years to accumulating very large datasets of collected data (such as GIS maps, biometric samples, videos etc.). On the other hand, it also created significant challenges driven by the higher than ever volumes and the complexity of the data, that can no longer be resolved through acquisition of more memory, faster processors or optimization of existing algorithms. These developments justified the need for radically new concepts for massive data storage, processing and visualization. To address this need, the current chapter presents the original methodology based on the paradigm of the Adaptive Geometric Computing. The methodology enables storing complex data in a compact form, providing efficient access to it, preserving high level of details and visualizing dynamic changes in a smooth and continuous manner. The first part of the chapter discusses adaptive algorithms in real-time visualization, specifically in GIS (Geographic Information Systems) applications. Data structures such as Real-time Optimally Adaptive Mesh (ROAM) and Progressive Mesh (PM) are briefly surveyed. The adaptive method Adaptive Spatial Memory (ASM), developed by R. Apu and M. Gavrilova, is then introduced. This method allows fast and efficient visualization of complex data sets representing terrains, landscapes and Digital Elevation Models (DEM). Its advantages are briefly discussed. The second part of the chapter presents application of adaptive computation paradigm and evolutionary computing to missile simulation. As a result, patterns of complex behavior can be developed and analyzed. The final part of the chapter marries a concept of adaptive computation and topology-based techniques and discusses their application to challenging area of biometric computing.

Publisher

IGI Global

Reference29 articles.

1. Geo-Mass: Modeling Massive Terrain in Real-Time;R.Apu;GEOMATICA J,2005

2. Apu, R., & Gavrilova, M. (2006) Battle Swarm: An Evolutionary Approach to Complex Swarm Intelligence, 3IA Int. C. Comp. Graphics and AI, Limoges, France, 139-150.

3. An Efficient Swarm Neighborhood Management for a 3D Tactical Simulator, IEEE-CS proceedings;R.Apu;ISVD,2006

4. Apu, R & Gavrilova, M. (2007) Fast and Efficient Rendering System for Real-Time Terrain Visualization, IJCSE Journal, 2(2), 5/6.

5. Asano, T. (2006) Aspect-Ratio Voronoi Diagram with Applications, ISVD 2006, IEEE-CS proceedings, 32-39

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3