Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services

Author:

Naoe Kensuke1,Sasaki Hideyasu2,Takefuji Yoshiyasu1

Affiliation:

1. Keio University, Japan

2. Ritsumeikan University, Japan

Abstract

The Service-Oriented Architecture (SOA) demands supportive technologies and new requirements for mobile collaboration across multiple platforms. One of its representative solutions is intelligent information security of enterprise resources for collaboration systems and services. Digital watermarking became a key technology for protecting copyrights. In this article, the authors propose a method of key generation scheme for static visual digital watermarking by using machine learning technology, neural network as its exemplary approach for machine learning method. The proposed method is to provide intelligent mobile collaboration with secure data transactions using machine learning approaches, herein neural network approach as an exemplary technology. First, the proposed method of key generation is to extract certain type of bit patterns in the forms of visual features out of visual objects or data as training data set for machine learning of digital watermark. Second, the proposed method of watermark extraction is processed by presenting visual features of the target visual image into extraction key or herein is a classifier generated in advance by the training approach of machine learning technology. Third, the training approach is to generate the extraction key, which is conditioned to generate watermark signal patterns, only if proper visual features are presented to the classifier. In the proposed method, this classifier which is generated by the machine learning process is used as watermark extraction key. The proposed method is to contribute to secure visual information hiding without losing any detailed data of visual objects or any additional resources of hiding visual objects as molds to embed hidden visual objects. In the experiments, they have shown that our proposed method is robust to high pass filtering and JPEG compression. The proposed method is limited in its applications on the positions of the feature sub-blocks, especially on geometric attacks like shrinking or rotation of the image.

Publisher

IGI Global

Reference36 articles.

1. Adams, C., & Lloyd, S. (1999). Understanding public-key infrastructure: concepts, standards, and deployment considerations. Macmillan Technical Publishing.

2. Location-driven watermark extraction using supervised learning on frequency domain.;R.Ando;WSEAS Transactions On Computers,2003

3. Digital steganography: hiding data within data

4. Bayesian theory.;J.Bernardo;Measurement Science & Technology,2001

5. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3