Adaptive Technology and Its Applications

Author:

Neto João José1

Affiliation:

1. Universidade de São Paulo, Brazil

Abstract

Before the advent of software engineering, the lack of memory space in computers and the absence of established programming methodologies led early programmers to use self-modification as a regular coding strategy. Although unavoidable and valuable for that class of software, solutions using self-modification proved inadequate while programs grew in size and complexity, and security and reliability became major requirements. Software engineering, in the 70’s, almost led to the vanishing of self-modifying software, whose occurrence was afterwards limited to small low-level machinelanguage programs with very special requirements. Nevertheless, recent research developed in this area, and the modern needs for powerful and effective ways to represent and handle complex phenomena in hightechnology computers are leading self-modification to be considered again as an implementation choice in several situations. Artificial intelligence strongly contributed for this scenario by developing and applying non-conventional approaches, e.g. heuristics, knowledge representation and handling, inference methods, evolving software/ hardware, genetic algorithms, neural networks, fuzzy systems, expert systems, machine learning, etc. In this publication, another alternative is proposed for developing Artificial Intelligence applications: the use of adaptive devices, a special class of abstractions whose practical application in the solution of current problems is called Adaptive Technology. The behavior of adaptive devices is defined by a dynamic set of rules. In this case, knowledge may be represented, stored and handled within that set of rules by adding and removing rules that represent the addition or elimination of the information they represent. Because of the explicit way adopted for representing and acquiring knowledge, adaptivity provides a very simple abstraction for the implementation of artificial learning mechanisms: knowledge may be comfortably gathered by inserting and removing rules, and handled by tracking the evolution of the set of rules and by interpreting the collected information as the representation of the knowledge encoded in the rule set.

Publisher

IGI Global

Reference17 articles.

1. Almeida, J. R., Jr. (1995)**. STAD - Uma ferramenta para representação e simulação de sistemas através de statecharts adaptativos. São Paulo, 202p. Doctoral Thesis. Escola Politécnica, Universidade de São Paulo.

2. Basseto, B. A., & Neto, J. J. (1999)*. A stochastic musical composer based on adaptive algorithms. Anais do XIX Congresso Nacional da Sociedade Brasileira de Computação. SBC-99, Vol. 3, pp. 105-13.

3. Generation and recognition of formal languages by modifiable grammars

4. Dynamic parsers and evolving grammars

5. A survey of adaptable grammars

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3