Information Hiding by Machine Learning

Author:

Naoe Kensuke1,Sasaki Hideyasu2,Takefuji Yoshiyasu1

Affiliation:

1. Keio University, Japan

2. Ritsumeikan University, Japan

Abstract

In this paper, the authors propose information hiding by machine learning: a method of key generation for information extracting using neural network. The method consists of three layers for information hiding. First, the proposed method prepares feature extraction keys, which are saved by feature extraction attributes like feature coordinates and the region of frequency coefficients. Second, the proposed method prepares hidden patterns in advance to the embedding procedure as a watermark signal of the target contents. Finally, the proposed method generates information extraction keys by using machine learning to output presented hidden patterns. The proper hidden patterns are generated with the proper information extraction key and feature extraction key. In the experiments, the authors show that the proposed method is robust to high pass filtering and JPEG compression. The proposed method contributes to secure visual information hiding without damaging any detailed data of the target content.

Publisher

IGI Global

Reference34 articles.

1. AiharaK. (1990). Chaotic neural networks. In KawakamiH. (Ed.), Bifurcation Phenomena in Nonlinear System and Theory of Dynamical Systems (Vol. 8, pp. 143–161). Advanced Series on Dynamical Systems.

2. Location-driven watermark extraction using supervised learning on frequency domain.;R.Ando;WSEAS Transactions on Computers,2003

3. Digital steganography: hiding data within data

4. Baumgarte, F., Ferekidis, C., & Fuchs, H. (1995). A nonlinear psychoacoustic model applied to the ISO MPEG layer 3 coder. Paper presented at the 99th AES Convention, New York, NY.

5. Bayesian theory.;J.Bernardo;Measurement Science & Technology,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3