Learning with Partial Supervision

Author:

Bouchachia Abdelhamid1

Affiliation:

1. University of Klagenfurt, Austria

Abstract

Recently the field of machine learning, pattern recognition, and data mining has witnessed a new research stream that is <i>learning with partial supervisio</i>n -LPS- (known also as <i>semi-supervised learning</i>). This learning scheme is motivated by the fact that the process of acquiring the labeling information of data could be quite costly and sometimes prone to mislabeling. The general spectrum of learning from data is envisioned in Figure 1. As shown, in many situations, the data is neither perfectly nor completely labeled.<div><br></div><div>LPS aims at using available labeled samples in order to guide the process of building classification and clustering machineries and help boost their accuracy. Basically, LPS is a combination of two learning paradigms: supervised and unsupervised where the former deals exclusively with labeled data and the latter is concerned with unlabeled data. Hence, the following questions:</div><div><br></div><div><ul><li>Can we improve supervised learning with unlabeled data?&nbsp;<br></li><li>Can we guide unsupervised learning by incorporating few labeled samples?<br></li></ul></div><div><br></div><div>Typical LPS applications are medical diagnosis (Bouchachia &amp; Pedrycz, 2006a), facial expression recognition (Cohen et al., 2004), text classification (Nigam et al., 2000), protein classification (Weston et al., 2003), and several natural language processing applications such as word sense disambiguation (Niu et al., 2005), and text chunking (Ando &amp; Zhangz, 2005).</div><div><br></div><div>Because LPS is still a young but active research field, it lacks a survey outlining the existing approaches and research trends. In this chapter, we will take a step towards an overview. We will discuss (i) the background of LPS, (iii) the main focus of our LPS research and explain the underlying assumptions behind LPS, and (iv) future directions and challenges of LPS research. </div>

Publisher

IGI Global

Reference26 articles.

1. Amiguet-Vercher, J., Szarowicz, A., & Forte, P. (2001). Synchronized Multi-agent Simulations for Automated Crowd Scene Simulation. In AGENT-1 Workshop Proceedings, IJCAI 2001, August 2001.

2. Bruno, F., Caruso, F., & Pisacane, O. (2008). A web3D application for the bin-packaging problem. In 20th European Modeling and Simulation Symposium (Simulation in Industry), EMSS08, Calabria, Italy.

3. Carnevale, C., Finzi, G., Pisoni, E., Singh, V., & Volta, M. (2007). Neuro-fuzzy and neural network systems for air quality control. In Urban Air Quality 2007, UAQ 2007, March 27-29, Cyprus.

4. Integrating Creative Steps in CAD Process. In International Seminar on Principles and Methods of Engineering Design.;P.Company;Proceedings,1997

5. Hartley, R. I., & Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge, UK: Cambridge Univ. Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3