Annotating Images by Mining Image Search

Author:

Wang Xin-Jing1,Zhang Lei1,Li Xirong1,Ma Wei-Ying1

Affiliation:

1. Microsoft Research Asia, China

Abstract

Although it has been studied for years by computer vision and machine learning communities, image annotation is still far from practical. In this chapter, the authors propose a novel attempt of modeless image annotation, which investigates how effective a data-driven approach can be, and suggest annotating an uncaptioned image by mining its search results. The authors collected 2.4 million images with their surrounding texts from a few photo forum Web sites as our database to support this data-driven approach. The entire process contains three steps: (1) the search process to discover visually and semantically similar search results; (2) the mining process to discover salient terms from textual descriptions of the search results; and (3) the annotation rejection process to filter noisy terms yielded by step 2. To ensure real time annotation, two key techniques are leveraged – one is to map the high dimensional image visual features into hash codes, the other is to implement it as a distributed system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less than 1 second. Since no training dataset is required, our proposed approach enables annotating with unlimited vocabulary, and is highly scalable and robust to outliers. Experimental results on real Web images show the effectiveness and efficiency of the proposed algorithm.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3