Electricity Load Forecasting Using Machine Learning Techniques

Author:

Acera Manuel Martín-Merino1

Affiliation:

1. University Pontificia of Salamanca, Spain

Abstract

Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical models, fuzzy systems or artificial neural networks. The Support Vector Machines (SVM) have been widely applied to the electricity load forecasting with remarkable results. In this chapter, the authors study the performance of the classical SVM in the problem of electricity load forecasting. Next, an algorithm is developed that takes advantage of the local character of the time series. The method proposed first splits the time series into homogeneous regions using the Self Organizing Maps (SOM) and next trains a Support Vector Machine (SVM) locally in each region. The methods presented have been applied to the prediction of the maximum daily electricity demand. The properties of the time series are analyzed in depth. All the models are compared rigorously through several objective functions. The experimental results show that the local model proposed outperforms several statistical and machine learning forecasting techniques.

Publisher

IGI Global

Reference32 articles.

1. Multilayer Neuro-fuzzy Network for Short Term Electric Load Forecasting

2. BowmanA. W.AzzaliniA. (1997). Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press.

3. ChàtfieldC. (1996). The Analysis of Time Series: An Introduction (5th ed.). New York: Chapman & Hall/CRC Press.

4. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001

5. Comparison of adaptive methods for function estimation from samples

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3