Learning Algorithms for RBF Functions and Subspace Based Functions

Author:

Xu Lei1

Affiliation:

1. Chinese University of Hong Kong and Beijing University, PR China

Abstract

Among extensive studies on radial basis function (RBF), one stream consists of those on normalized RBF (NRBF) and extensions. Within a probability theoretic framework, NRBF networks relates to nonparametric studies for decades in the statistics literature, and then proceeds in the machine learning studies with further advances not only to mixture-of-experts and alternatives but also to subspace based functions (SBF) and temporal extensions. These studies are linked to theoretical results adopted from studies of nonparametric statistics, and further to a general statistical learning framework called Bayesian Ying Yang harmony learning, with a unified perspective that summarizes maximum likelihood (ML) learning with the EM algorithm, RPCL learning, and BYY learning with automatic model selection, as well as their extensions for temporal modeling. This chapter outlines these advances, with a unified elaboration of their corresponding algorithms, and a discussion on possible trends.

Publisher

IGI Global

Reference83 articles.

1. A new look at the statistical model identification;H.Akaike;IEEE Transactions on Automatic Control,1974

2. Likelihood of a model and information criteria;H.Akaike;Journal of Econometrics,1981

3. Amari, S. I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind separation of sources, In Touretzky, Mozer, & Hasselmo (Eds.), Advances in Neural Information Processing System 8, MIT Press, 757-763.

4. An information-maximization approach to blind separation and blind deconvolution.;A.Bell;Neural Computation,1995

5. Botros, S. M., & Atkeson, C. G. (1991). Generalization properties of radial basis function. In Lippmann, Moody, & Touretzky (Eds.), Advances in Neural Information Processing System 3, Morgan Kaufmann Pub., 707-713.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3