Addressing the Challenges of Detecting Epistasis in Genome-Wide Association Studies of Common Human Diseases Using Biological Expert Knowledge

Author:

Pattin Kristine A.1,Moore Jason H.1

Affiliation:

1. Dartmouth Medical School, USA

Abstract

Recent technological developments in the field of genetics have given rise to an abundance of research tools, such as genome-wide genotyping, that allow researchers to conduct genome-wide association studies (GWAS) for detecting genetic variants that confer increased or decreased susceptibility to disease. However, discovering epistatic, or gene-gene, interactions in high dimensional datasets is a problem due to the computational complexity that results from the analysis of all possible combinations of single-nucleotide polymorphisms (SNPs). A recently explored approach to this problem employs biological expert knowledge, such as pathway or protein-protein interaction information, to guide an analysis by the selection or weighting of SNPs based on this knowledge. Narrowing the evaluation to gene combinations that have been shown to interact experimentally provides a biologically concise reason why those two genes may be detected together statistically. This chapter discusses the challenges of discovering epistatic interactions in GWAS and how biological expert knowledge can be used to facilitate genome-wide genetic studies.

Publisher

IGI Global

Reference71 articles.

1. A haplotype map of the human genome

2. Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission

3. Beyond Mendel: an evolving view of human genetic disease transmission

4. Bush, W. S., Dudek, S. M., & Ritchie, M. D. (2009). BioFilter: A knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pacific Symposium on Biocomputing, 368-379.

5. Agnosticism and equity in genome-wide association studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3