On Handling the Evolution of External Data Sources in a Data Warehouse Architecture

Author:

Wrembel Robert1

Affiliation:

1. Poznan University of Technology, Poland

Abstract

A data warehouse architecture (DWA) has been developed for the purpose of integrating data from multiple heterogeneous, distributed, and autonomous external data sources (EDSs) as well as for providing means for advanced analysis of integrated data. The major components of this architecture include: an external data source (EDS) layer, and extraction-transformation-loading (ETL) layer, a data warehouse (DW) layer, and an on-line analytical processing (OLAP) layer. Methods of designing a DWA, research developments, and most of the commercially available DW technologies tacitly assumed that a DWA is static. In practice, however, a DWA requires changes among others as the result of the evolution of EDSs, changes of the real world represented in a DW, and new user requirements. Changes in the structures of EDSs impact the ETL, DW, and OLAP layers. Since such changes are frequent, developing a technology for handling them automatically or semi-automatically in a DWA is of high practical importance. This chapter discusses challenges in designing, building, and managing a DWA that supports the evolution of structures of EDSs, evolution of an ETL layer, and evolution of a DW. The challenges and their solutions presented here are based on an experience of building a prototype Evolving-ETL and a prototype Multiversion Data Warehouse (MVDW). In details, this chapter presents the following issues: the concept of the MVDW, an approach to querying the MVDW, an approach to handling the evolution of an ETL layer, a technique for sharing data between multiple DW versions, and two index structures for the MVDW.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Stream ETL Process;Communications in Computer and Information Science;2014

2. Modeling Data Stream Intensity in Distributed Stream Processing System;Computer Networks;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3