Affiliation:
1. University of Magdeburg, Germany
2. BT Group plc, UK
Abstract
Association rule mining typically produces large numbers of rules, thereby creating a second-order data mining problem: which of the generated rules are the most interesting? And: should interestingness be measured objectively or subjectively? To tackle the amount of rules that are created during the mining step, the authors propose the combination of two novel ideas: first, there is rule change mining, which is a novel extension to standard association rule mining which generates potentially interesting time-dependent features for an association rule. It does not require changes in the existing rule mining algorithms and can therefore be applied during post-mining of association rules. Second, the authors make use of the existing textual description of a rule and those newly derived objective features and combine them with a novel approach towards subjective interestingness by using relevance feedback methods from information retrieval. The combination of these two new approaches yields a powerful, intuitive way of exploring the typically vast set of association rules. It is able to combine objective and subjective measures of interestingness and will incorporate user feedback. Hence, it increases the probability of finding the most interesting rules given a large set of association rules.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献