Video Summarization by Redundancy Removing and Content Ranking

Author:

Wang Tao1,Gao Yue2,Wang Patricia1,Hu Wei1,Li Jianguo1,Du Yangzhou1,Zhang Yimin1

Affiliation:

1. Intel Labs China, China

2. Intel Labs China, China & Tsinghua University, China

Abstract

Video summary is very important for users to grasp a whole video’s content quickly for efficient browsing and editing. In this chapter, we propose a novel video summarization approach based on redundancy removing and content ranking. Firstly, by video parsing and cast indexing, the approach constructs a story board to let user know about the main scenes and the main actors in the video. Then it removes redundant frames to generate a “story-constraint summary” by key frame clustering and repetitive segment detection. To shorten the video summary length to a target length, “time-constraint summary” is constructed by important factor based content ranking. Extensive experiments are carried out on TV series, movies, and cartoons. Good results demonstrate the effectiveness of the proposed method.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3