Evidence Sources, Methods and Use Cases for Learning Lightweight Domain Ontologies

Author:

Weichselbraun Albert1,Wohlgenannt Gerhard1,Scharl Arno2

Affiliation:

1. Vienna University of Economics and Business, Austria

2. MODUL University Vienna, Austria

Abstract

By providing interoperability and shared meaning across actors and domains, lightweight domain ontologies are a cornerstone technology of the Semantic Web. This chapter investigates evidence sources for ontology learning and describes a generic and extensible approach to ontology learning that combines such evidence sources to extract domain concepts, identify relations between the ontology’s concepts, and detect relation labels automatically. An implementation illustrates the presented ontology learning and relation labeling framework and serves as the basis for discussing possible pitfalls in ontology learning. Afterwards, three use cases demonstrate the usefulness of the presented framework and its application to real-world problems.

Publisher

IGI Global

Reference36 articles.

1. Alani, H. (2006). Position paper: Ontology construction from online ontologies. In L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, & M. Dahlin (Eds.), Proceedings of the 15th International Conference on World Wide Web (WWW 2006) (pp. 491–495). Edinburgh, Scotland, UK: ACM.

2. Aleksovski, Z., ten Kate, W., & van Harmelen, F. (2006). Ontology matching using comprehensive ontology as background knowledge. In P. Shvaiko et al. (Eds.), Proceedings of the International Workshop on Ontology Matching at ISWC 2006 (pp. 13–24). Athens, GA, USA: CEUR.

3. Angeletou, S., Sabou, M., Specia, L., & Motta, E. (2007). Bridging the gap between folksonomies and the Semantic Web: An experience report (vol. 2).

4. DBpedia - A crystallization point for the Web of Data

5. 7). Ontology learning from text: An overview;P.Buitelaar;Ontology learning from text: Methods, evaluation and applications/ frontiers in artificial intelligence and applications,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Thai Knowledge Extraction for the Semantic Web Research and Tools;IEICE Transactions on Information and Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3