Left Ventricle Segmentation and Motion Analysis in MultiSlice Computerized Tomography

Author:

Bravo Antonio1,Mantilla Juan1,Clemente José1,Vera Miguel2

Affiliation:

1. Universidad Nacional Experimental del Táchira, Venezuela

2. Universidad de Los Andes, Colombia

Abstract

Cardiac motion analysis is an important tool for evaluating the cardiac function. Accurate motion estimation techniques are necessary for providing a set of parameters useful for diagnosis and guiding therapeutical actions. In this chapter, the problem of cardiac motion estimation is presented. A short overview of techniques based in several imaging modalities is given where the machine learning techniques have played an important role. A feasible solution for left ventricle segmentation in multislice computerized tomography (MSCT) and for estimating the left ventricle motion is presented. This method is based on the application of support vector machines (SVM), region growing and a nonrigid bidimensional correspondence algorithm used for tracking the anatomical landmarks extracted from the segmented left ventricle (LV). Some experimental results are presented and at the end of the chapter a short summary is presented.

Publisher

IGI Global

Reference32 articles.

1. A 3-D Active Shape Model Driven by Fuzzy Inference: Application to Cardiac CT and MR

2. Bjornstad, K., Maehle, J., & Aakhus, S. (1993). Quantitative computerized analysis of left ventricular wall motion. In S. Domenicucci, J. Roelandt, & A. Pezzano (Eds.), Computerized echocardiography (pp. 41-55). Torino, Italy: Centro scientifico di Torino.

3. Bravo, A., Vera, M., & Medina, R. (2007). Edge detection in ventriculograms using a support vector machine classifier and deformable models. In L. Rueda, D. Mery & J. Kittler (Eds.), Progress in Pattern Recognition, Image Analysis and Applications (pp. 793-802). Berlin, Germany: SpringerVerlag.

4. Analysis of 3-D Myocardial Motion in Tagged MR Images Using Nonrigid Image Registration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3