Mining Frequent Boolean Expressions

Author:

Zaki Mohammed J.1,Ramakrishnan Naren2,Zhao Lizhuang3

Affiliation:

1. Rensselaer Polytechnic Institute, USA

2. Virginia Tech., USA

3. Microsoft Corp., USA

Abstract

Regulatory network analysis and other bioinformatics tasks require the ability to induce and represent arbitrary boolean expressions from data sources. In this paper, the authors introduce a novel framework called BLOSOM for mining (frequent) boolean expressions over binary-valued datasets. Boolean expressions can be grouped into four categories: pure conjunctions, pure disjunctions, conjunction of disjunctions, and disjunction of conjunctions. The authors’ main focus is on mining the simplest expressions (the minimal generators), but also to propose closure operators that yield closed (or unique maximal) boolean expressions. BLOSOM efficiently mines frequent boolean expressions by utilizing a number of methodical pruning techniques. Experiments showcase the behavior of BLOSOM for different input settings and parameter thresholds. Application studies on gene expression and gene regulation patterns showcase the effectiveness of this approach.

Publisher

IGI Global

Reference30 articles.

1. Fast discovery of association rules;R.Agrawal;Advances in Knowledge Discovery and Data Mining,1996

2. Akutsu, T., Kuhara, S., Maruyama, O., & Miyano, S. (1998). Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.

3. Antonie, M.-L., & Zaiane, O. (2004). Mining positive and negative association rules: An approach for confined rules. In Proceedings of the European PKDD Conf.

4. Mining frequent patterns with counting inference.;Y.Bastide;SIGKDD Explorations,2000

5. Bayardo, R. J., & Agrawal, R. (1999). Mining the most interesting rules. In Proceedings of the ACM SIGKDD Conf.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering Succinct Pattern Sets Expressing Co-Occurrence and Mutual Exclusivity;Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining;2020-08-20

2. Sampling frequent and minimal boolean patterns: theory and application in classification;Data Mining and Knowledge Discovery;2015-03-12

3. Disclosed: An efficient depth-first, top-down algorithm for mining disjunctive closed itemsets in high-dimensional data;Information Sciences;2014-10

4. A Journey in Pattern Mining;Journeys to Data Mining;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3