Fast and Effective Classification using Parallel and Multi-start PSO

Author:

Balasaraswathi M 1,Kalpana B 2

Affiliation:

1. Department of Information Technology, SNR Sons College, Coimbatore, India

2. Department of Computer Science, Avinashilingam University, Coimbatore, India

Abstract

PSO being a swarm based algorithm, can efficiently lend itself to operate on huge data. This article presents a technique that performs classification using PSO. An initial discussion is carried out describing PSO as a classifier. Three variants of PSO are proposed here; the first variant hybridizes PSO using Simulated Annealing and the next two variants parallelizes PSO. The two parallel variants of PSO are; Parallel PSO and Multistart PSO. Parallel PSO operates by parallelizing the operation of each of the particles and Multistart PSO runs several normal versions of PSO embedded with Simulated Annealing in parallel. The multi-start version is implemented to eliminate the problem of local optima. Experiments were conducted to identify the scalability and efficiency of PSO and its variants on huge and imbalanced data.

Publisher

IGI Global

Subject

General Computer Science

Reference30 articles.

1. Ali, S.A., Sulaiman, N., Mustapha, A. & Mustapha, N. (2009). Decision Tree Response Classification. Information technology journal, 8(8), 1256-1262.

2. Balasaraswathi, M. & Kalpana, B. (2015). Classification using Modified PSO Incorporating Probabilistic MH for Improved Convergence.

3. Bianchi, L., Dorigo, M., Gambardella, L.M. & Gutjahr, W.J. (2009). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing: an international journal, 8(2), 239-287.

4. Brits, R., Engelbrecht, A. P., & Van den Bergh, F. (2004). Solving systems of unconstrained equations using particle swarm optimization. In Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics (Vol. 3). IEEE.

5. Facing classification problems with Particle Swarm Optimization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3