Improved Personalized Recommendation based on Causal Association Rule and Collaborative Filtering

Author:

Lei Wu1,Qing Fang2,Zhou Jin3

Affiliation:

1. Time Publishing and Media Co., Ltd., Hefei, China and School of Information Management, Wuhan University, Wuhan, China

2. School of Information Management, Wuhan University, Wuhan, China

3. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China

Abstract

There are usually limited user evaluation of resources on a recommender system, which caused an extremely sparse user rating matrix, and this greatly reduce the accuracy of personalized recommendation, especially for new users or new items. This paper presents a recommendation method based on rating prediction using causal association rules. First, users and items are mapped into two feature vectors, which would be minded later to get the causal association rules from the perspective of data mining; then based on the casual association rules, the authors create a preference matrix which would predict the rating of the items that users have not rated; finally a nearest neighbor similarity measure method is designed for personalized recommendation. Experiment shows that the algorithm efficiently improves the recommendation comparing to traditional methods.

Publisher

IGI Global

Subject

Computer Networks and Communications,Computer Science Applications,Education

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3