A Novel Ensemble Learning Model Combined XGBoost With Deep Neural Network for Credit Scoring

Author:

He Xiaowei1,Li Siqi1,He Xin Tian1,Wang Wenqiang1,Zhang Xiang1,Wang Bin1ORCID

Affiliation:

1. Northwest University of Information Science and Technology, China

Abstract

Credit scoring, aiming to distinguish potential loan defaulter, has played an important role in the financial industry. To further improve the accuracy and efficiency of classification, this paper develops an ensemble model combined extreme gradient boosting (XGBoost) and deep neural network (DNN). In the method, training set is divided into different subsets by bagging sampling at first. Then, each subset is trained as a feature extractor by DNN and the extracted features is taken as the input of XGBoost to construct the base classifier. At last, the prediction result is the average of outputs of different base classifiers. In the training verification process, three credit datasets from the UCI machine learning repository are used to evaluate the proposed model. The outcome shows that this model is superior with a significant improvement.

Publisher

IGI Global

Subject

General Computer Science

Reference42 articles.

1. The Higgs Machine Learning Challenge

2. Making Accurate Credit Risk Predictions with Cost-Sensitive MLP;R.Alejo;Neural Networks,2013

3. Bagging predictors

4. An artificial immune classifier for credit scoring analysis

5. XGBoost

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3