Design of Intelligent Financial System Based on Adaptive Learning Algorithm

Author:

Zhang Zhaozhe1,Ahmad Shahbaz2

Affiliation:

1. Henan Technical Institute, China

2. National Textile University, Pakistan

Abstract

The high-frequency trading system in the financial domain has long been a focal point of investigation. This study posits an intelligent financial system design framework predicated on a cross-adaptive self-entropy projection clustering model, aimed at enhancing the efficacy of high-frequency trading systems. A composite distribution model of financial data is formulated to derive sequences of financial data activities. And cross-adaptive learning algorithm is employed to ascertain the interrelated attributes of financial data. Following this, the support vector machine algorithm is applied for the classification processing of these interrelated features, yielding a set of financial data feature vectors, which are then fed into the gray correlation-based information feature extraction model. Through extensive empirical evaluations with authentic trading data, the proposed intelligent financial system design framework exhibits commendable performance, furnishing a viable solution for the intelligent optimization of high-frequency trading systems.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3