Research on Big Data-Driven Urban Traffic Flow Prediction Based on Deep Learning

Author:

Qin Xiaoan1

Affiliation:

1. Anhui Business College of Vocational Technology, China

Abstract

This paper introduces an innovative approach for the urban traffic flow prediction (TFP) that utilizes big data and deep learning (D-L) to improve accuracy, reducing the incidence of large errors commonplace in traditional methods. By implementing this method, sustainable urban developments are able to be achieved more effectively in the future. First, an Attention-CNN-GRU-ResNet (ACGR) TFP model is built with the D-L network by gridding the urban traffic flow (TF) into a three-dimensional S-T tensor sequence. An attention-based GRU is then introduced to combine spatial and channel attention in the traditional GRU, and the time dependence and spatio-temporal (S-T) heterogeneity of TF in each subset are effectively extracted. Finally, a ResNet module is introduced to capture the S-T dependency, which helps avoid the deep network degradation caused by excessive layers. Results show the proposed method generates the minimum value in RMSE, MAE, and MAPE with 18.32, 10.66, and 5.34, respectively. This research provides a new idea to alleviate data sparsity and consider the difference of input features and offers a novel approach to solve the S-T learning tasks associated with modeling.

Publisher

IGI Global

Subject

General Computer Science

Reference33 articles.

1. Analysis of freeway traffic time-series data by using Box-Jenkins techniques.;M. S.Ahmed;Transportation Research Record: Journal of the Transportation Research Board,1979

2. Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. (2020). Adaptive graph convolutional recurrent network for traffic forecasting. Advances in Neural Information Processing Systems, 33(5), 322-330.

3. Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach

4. Short-Term Traffic Flow Prediction: An Integrated Method of Econometrics and Hybrid Deep Learning

5. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and Implementation of Pedestrian Attribute Recognition Algorithm Based on Deep Learning;International Journal of Information Technologies and Systems Approach;2024-05-22

2. Delivery Garbage Behavior Detection Based on Deep Learning;International Journal of Information Technologies and Systems Approach;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3