Early Warning of Companies' Credit Risk Based on Machine Learning

Author:

Tan Benyan1,Lin Yujie1

Affiliation:

1. College of Economics and Management, China Three Gorges University, China

Abstract

With the advent of the big data era, information barriers are gradually being broken down and credit has become a key factor of company operations. The lack of company credit has greatly and negatively impacted the social economy, which has triggered considerable research on company credit. In this article, a credit risk warning model based on the XGBoost-SHAP algorithm is proposed that can accurately assess the credit risk of a company. The degree of influence of the characteristics of a company's credit risk and the warning threshold of important characteristics are obtained based on the model output. Finally, a comparison with several other machine learning algorithms showed that the XGBoost-SHAP model achieved the highest early warning accuracy and the most comprehensive explanatory output results. The experimental results show that the method can effectively provide a warning of the credit risk of a company based on the historical performance of the company's historical characteristics data. This method provides positive guidance for companies and financial institutions.

Publisher

IGI Global

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3