Estimating Overhead Performance of Supervised Machine Learning Algorithms for Intrusion Detection

Author:

Baidoo Charity Yaa Mansa1,Yaokumah Winfred1ORCID,Owusu Ebenezer1

Affiliation:

1. University of Ghana, Ghana

Abstract

Estimating the energy and memory consumption of machine learning(ML) models for intrusion detection ensures efficient allocation of system resources. This study investigates the impact of supervised ML algorithms on the energy and memory consumption of intrusion detection systems. Experiments are conducted with seven ML algorithms and a proposed ensemble model, utilizing two intrusion detection datasets. Pearson correlation coefficient(PCC) and Spearman correlation coefficient are employed for the selection of optimum features. Regarding energy consumption, the findings reveal that the PCC with the UNSW-NB15 dataset uses the least amount of DRAM and CPU power. For ML methods, SVM utilizes the highest energy for both feature selection methods and datasets. Concerning memory consumption, the results show that decision tree uses the most current memory with PCC on the UNSW-NB15. The proposed ensemble model demonstrates the highest performance. These findings offer practical guidelines to ML experts when choosing the optimum model with the most efficient utilization of energy and memory.

Publisher

IGI Global

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3