Low-Quality Error Detection for Noisy Knowledge Graphs

Author:

Bu *Chenyang1ORCID,Yu Xingchen2,Hong Yan2,Jiang Tingting2

Affiliation:

1. Ministry of Education Key Laboratory of Knowledge Engineering with Big Data, School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China

2. Hefei University of Technology, China

Abstract

The automatic construction of knowledge graphs (KGs) from multiple data sources has received increasing attention. The automatic construction process inevitably brings considerable noise, especially in the construction of KGs from unstructured text. The noise in a KG can be divided into two categories: factual noise and low-quality noise. Factual noise refers to plausible triples that meet the requirements of ontology constraints. For example, the plausible triple <New_York, IsCapitalOf, America> satisfies the constraints that the head entity “New_York” is a city and the tail entity “America” belongs to a country. Low-quality noise denotes the obvious errors commonly created in information extraction processes. This study focuses on entity type errors. Most existing approaches concentrate on refining an existing KG, assuming that the type information of most entities or the ontology information in the KG is known in advance. However, such methods may not be suitable at the start of a KG's construction. Therefore, the authors propose an effective framework to eliminate entity type errors. The experimental results demonstrate the effectiveness of the proposed method.

Publisher

IGI Global

Subject

Hardware and Architecture,Information Systems,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3