Affiliation:
1. York University, Canada
2. blockchain.lab, York University, Canada
3. Aion Network, Canada
Abstract
Blockchains rely on a consensus among participants to achieve decentralization and security. However, reaching consensus in an online, digital world where identities are not tied to physical users is a challenging problem. Proof-of-work provides a solution by linking representation to a valuable, physical resource. While this has worked well, it uses a tremendous amount of specialized hardware and energy, with no utility beyond blockchain security. Here, the authors propose an alternative consensus scheme that directs the computational resources to the optimization of machine learning (ML) models – a task with more general utility. This is achieved by a hybrid consensus scheme relying on three parties: data providers, miners, and a committee. The data provider makes data available and provides payment in return for the best model, miners compete about the payment and access to the committee by producing ML optimized models, and the committee controls the ML competition.
Subject
Hardware and Architecture,Information Systems,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献