Affiliation:
1. Department of Industrial Management, Allameh Tabataba'i University, Tehran, Iran
2. School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
One of the most widely used algorithms to solve clustering problems is the K-means. Despite of the algorithm's timely performance to find a fairly good solution, it shows some drawbacks like its dependence on initial conditions and trapping in local minima. This paper proposes a novel hybrid algorithm, comprised of K-means and a variation operator inspired by mutation in evolutionary algorithms, called Noisy K-means Algorithm (NKA). Previous research used K-means as one of the genetic operators in Genetic Algorithms. However, the proposed NKA is a kind of individual based algorithm that combines advantages of both K-means and mutation. As a result, proposed NKA algorithm has the advantage of faster convergence time, while escaping from local optima. In this algorithm, a probability function is utilized which adaptively tunes the rate of mutation. Furthermore, a special mutation operator is used to guide the search process according to the algorithm performance. Finally, the proposed algorithm is compared with the classical K-means, SOM Neural Network, Tabu Search and Genetic Algorithm in a given set of data. Simulation results statistically demonstrate that NKA out-performs all others and it is prominently prone to real time clustering.
Subject
Hardware and Architecture,Software
Reference37 articles.
1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1996). Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining, 12, 307-328.
2. A k-mean clustering algorithm for mixed numeric and categorical data
3. A Tabu search approach to the clustering problem
4. Improving the performance of k-means for color quantization
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献