Adaptation of Error Adjusted Bagging Method for Prediction

Author:

Isikhan Selen Yilmaz1ORCID,Karabulut Erdem1,Samadi Afshin1,Kılıçkap Saadettin1

Affiliation:

1. Hacettepe University, Ankara, Turkey

Abstract

In this study, the error-adjusted bagging technique is adapted to support vector regression (SVR) and regression tree (RT) methods to obtain more accurate predictions, and then the method performances are evaluated with real data sets and a simulation study. For this purpose, the prediction performances of single models, classical bagging models, and error-adjusted bagging models obtained via complementary versions of the above-mentioned methods are constructed. The comparison is mainly based on a real dataset of 295 patients with Hodgkin's lymphoma (HL). The effect of several parameters such as training set ratio, the number of influential predictors on model performances, is examined with 500 repetitions of simulation data. The results reveal that error-adjusted bagging method provides the best performance compared to both single and classical bagging performances of the methods. Furthermore, the bias variance analysis confirms the success of this technique in reducing both bias and variance.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference44 articles.

1. Amatya, A., Demirtas, H., & Amatya, M. A. (2016). Package ‘BinNor.’

2. Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data

3. Bagging predictors

4. Analyzing bagging.;P.Büchlmann;Annals of Statistics,2002

5. Carmona, P. L., Sotoca, J. M., Pla, F., Phoa, F. K. H., & Bioucas-Dias, J. M. (2011). Feature Selection in Regression Tasks Using Conditional Mutual Information. Paper presented at the IbPRIA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3