Understanding the SNN Input Parameters and How They Affect the Clustering Results

Author:

Moreira Guilherme1,Santos Maribel Yasmina1,Pires João Moura2,Galvão João1

Affiliation:

1. ALGORITMI Research Centre, University of Minho, Guimarães, Portugal

2. NOVA LINCS, Nova University of Lisbon, Lisbon, Portugal

Abstract

Huge amounts of data are available for analysis in nowadays organizations, which are facing several challenges when trying to analyze the generated data with the aim of extracting useful information. This analytical capability needs to be enhanced with tools capable of dealing with big data sets without making the analytical process an arduous task. Clustering is usually used in the data analysis process, as this technique does not require any prior knowledge about the data. However, clustering algorithms usually require one or more input parameters that influence the clustering process and the results that can be obtained. This work analyses the relation between the three input parameters of the SNN (Shared Nearest Neighbor) clustering algorithm, providing a comprehensive understanding of the relationships that were identified between k, Eps and MinPts, the algorithm's input parameters. Moreover, this work also proposes specific guidelines for the definition of the appropriate input parameters, optimizing the processing time, as the number of trials needed to achieve appropriate results can be substantial reduced.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3