Mining Top-k Regular High-Utility Itemsets in Transactional Databases

Author:

Kumari P. Lalitha1,Sanjeevi S. G.1,Rao T.V. Madhusudhana2

Affiliation:

1. National Institute of Technology, Warangal, India

2. Sri Sivani College Of Engineering, Srikakulam, India

Abstract

Mining high-utility itemsets is an important task in the area of data mining. It involves exponential mining space and returns a very large number of high-utility itemsets. In a real-time scenario, it is often sufficient to mine a small number of high-utility itemsets based on user-specified interestingness. Recently, the temporal regularity of an itemset is considered as an important interesting criterion for many applications. Methods for finding the regular high utility itemsets suffers from setting the threshold value. To address this problem, a novel algorithm called as TKRHU (Top k Regular High Utility Itemset) Miner is proposed to mine top-k high utility itemsets that appears regularly where k represents the desired number of regular high itemsets. A novel list structure RUL and efficient pruning techniques are developed to discover the top-k regular itemsets with high profit. Efficient pruning techniques are designed for reducing search space. Experimental results show that proposed algorithm using novel list structure achieves high efficiency in terms of runtime and space.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Association Rule Mining Based on Hybrid Whale Optimization Algorithm;International Journal of Data Warehousing and Mining;2022-08-04

2. Cockroach Swarm Optimization Algorithm for High Utility Association Rule Mining;International Journal of Swarm Intelligence Research;2021-07

3. Mining of top-k high utility itemsets with negative utility;Journal of Intelligent & Fuzzy Systems;2021-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3