Skeleton Network Extraction and Analysis on Bicycle Sharing Networks

Author:

Malang Kanokwan1ORCID,Wang Shuliang1ORCID,Lv Yuanyuan1,Phaphuangwittayakul Aniwat2ORCID

Affiliation:

1. Beijing Institute of Technology, China

2. Chiang Mai University, Thailand

Abstract

Skeleton network extraction has been adopted unevenly in transportation networks whose nodes are always represented as spatial units. In this article, the TPks skeleton network extraction method is proposed and applied to bicycle sharing networks. The method aims to reduce the network size while preserving key topologies and spatial features. The authors quantified the importance of nodes by an improved topology potential algorithm. The spatial clustering allows to detect high traffic concentrations and allocate the nodes of each cluster according to their spatial distribution. Then, the skeleton network is constructed by aggregating the most important indicated skeleton nodes. The authors examine the skeleton network characteristics and different spatial information using the original networks as a benchmark. The results show that the skeleton networks can preserve the topological and spatial information similar to the original networks while reducing their size and complexity.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference48 articles.

1. Density-based reverse nearest neighbourhood search in spatial databases

2. Blagus, N., Šubelj, L., & Bajec, M. (2015). Assessing the effectiveness of real-world network simplification. Retrieved from http://arxiv.org/abs/1502.05156

3. A backbone extraction method with Local Search for complex weighted networks

4. Chawla, S., Garimella, K., Gionis, A., & Tsang, D. (2014). Discovering the Network Backbone from Traffic Activity Data. Retrieved from http://arxiv.org/abs/1402.6138

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3