Parallel Real-Time OLAP on Multi-Core Processors

Author:

Dehne Frank1,Zaboli Hamidreza1

Affiliation:

1. School of Computer Science, Carleton University, Ottawa, Canada

Abstract

One of the most powerful and prominent technologies for knowledge discovery in decision support systems is online analytical processing (OLAP). Most of the traditional OLAP research, and most of the commercial systems, follow the static data cube approach proposed by Gray et.al. and materialize all or a subset of the cuboids of the data cube in order to ensure adequate query performance. Practitioners have called for some time for a real-time OLAP approach where the OLAP system gets updated instantaneously as new data arrives and always provides an up-to-date data warehouse for the decision support process. However, a major problem for real-time OLAP is the significant performance issues with large scale data warehouses. The aim of our research is to address these problems through the use of efficient parallel computing methods. In this paper, we present a parallel real-time OLAP system for multi-core processors. To our knowledge, this is the first real-time OLAP system that has been parallelized and optimized for contemporary multi-core architectures. Our system allows for multiple insert and multiple query transactions to be executed in parallel and in real-time. We evaluated our method for a multitude of scenarios (different ratios of insert and query transactions, query transactions with different amounts of data aggregation, different database sizes, etc.), using the TPCDS “Decision Support” benchmark data set. As multi-core test platforms, we used an Intel Sandy Bridge processor with 4 cores (8 hardware supported threads) and an Intel Xeon Westmere processor with 20 cores (40 hardware supported threads). The tests demonstrate that, with increasing number of processor cores, our parallel system achieves close to linear speedup in transaction response time and transaction throughput. On the 20 core architecture we achieved, for a 100 GB database, a better than 0.25 second query response time for real-time OLAP queries that aggregate 25% of the database. Since hardware performance improvements are currently, and in the foreseeable future, achieved not by faster processors but by increasing the number of processor cores, our new parallel real-time OLAP method has the potential to enable OLAP systems that operate in real-time on large databases.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3