Affiliation:
1. Department of IT Convergence, Korea University, Seoul, South Korea
2. Department of Computer Science and Engineering, Korea University, Seoul, South Korea
Abstract
Data cube plays a key role in the analysis of multidimensional data. Nowadays, the explosive growth of multidimensional data has made distributed solutions important for data cube computation. Among the architectures for distributed processing, the shared-nothing architecture is known to have the best scalability. However, frequent and massive network communication among the processors can be a performance bottleneck in shared-nothing distributed processing. Therefore, suppressing the amount of data transmission among the processors can be an effective strategy for improving overall performance. In addition, dividing the workload and distributing them evenly to the processors is important. In this paper, the authors present a distributed algorithm for data cube computation that can be adopted in shared-nothing systems. The proposed algorithm gains efficiency by adopting the workload assignment strategy that reduces the total network cost and allocates the workload evenly to each processor, simultaneously.
Subject
Hardware and Architecture,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献