A Workload Assignment Strategy for Efficient ROLAP Data Cube Computation in Distributed Systems

Author:

Suh Ilhyun1,Chung Yon Dohn2

Affiliation:

1. Department of IT Convergence, Korea University, Seoul, South Korea

2. Department of Computer Science and Engineering, Korea University, Seoul, South Korea

Abstract

Data cube plays a key role in the analysis of multidimensional data. Nowadays, the explosive growth of multidimensional data has made distributed solutions important for data cube computation. Among the architectures for distributed processing, the shared-nothing architecture is known to have the best scalability. However, frequent and massive network communication among the processors can be a performance bottleneck in shared-nothing distributed processing. Therefore, suppressing the amount of data transmission among the processors can be an effective strategy for improving overall performance. In addition, dividing the workload and distributing them evenly to the processors is important. In this paper, the authors present a distributed algorithm for data cube computation that can be adopted in shared-nothing systems. The proposed algorithm gains efficiency by adopting the workload assignment strategy that reduces the total network cost and allocates the workload evenly to each processor, simultaneously.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative study of cluster-based Big Data Cube implementations;Future Generation Computer Systems;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3