BAHUI

Author:

Song Wei1,Liu Yu1,Li Jinhong1

Affiliation:

1. College of Information Engineering, North China University of Technology, Beijing, China

Abstract

Mining high utility itemsets is one of the most important research issues in data mining owing to its ability to consider nonbinary frequency values of items in transactions and different profit values for each item. Although a number of relevant approaches have been proposed in recent years, they incur the problem of producing a large number of candidate itemsets for high utility itemsets. In this paper, the authors propose an efficient algorithm, namely BAHUI (Bitmap-based Algorithm for High Utility Itemsets), for mining high utility itemsets with bitmap database representation. In BAHUI, bitmap is used vertically and horizontally. On the one hand, BAHUI exploits a divide-and-conquer approach to visit itemset lattice by using bitmap vertically. On the other hand, BAHUI horizontally uses bitmap to calculate the real utilities of candidates. Using bitmap compression scheme, BAHUI reduces the memory usage and makes use of the efficient bitwise operation. Furthermore, BAHUI only records candidate high utility itemsets with maximal length, and inherits the pruning and searching strategies from maximal itemset mining problem. Extensive experimental results show that the BAHUI algorithm is both efficient and scalable.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference30 articles.

1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Databases (pp. 487-499). San Francisco, CA: Morgan Kaufmann.

2. Efficient Tree Structures for High Utility Pattern Mining in Incremental Databases

3. HUC-Prune: an efficient candidate pruning technique to mine high utility patterns

4. Incremental Algorithm for Discovering Frequent Subsequences in Multiple Data Streams

5. Redundant association rules reduction techniques

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3