An Efficient Method of Tooth Segmentation Under Massive Medical Data

Author:

Ma Tian1,Yang Yizhou1,Li Yun1,Li Zhanli1,Li Yuancheng1

Affiliation:

1. Xi'an University of Science and Technology, China

Abstract

To accurately and efficiently complete tooth segmentation from a large amount of oral medical data, the burden of doctors should be reduced. An automatic seed picking method based on 2D projection of the occlusal plane was proposed. First, the authors establish a two-dimensional seed data set for tooth segmentation. Then, this article built a prediction network of teeth seeds based on YOLOv4 to realize the prediction of teeth position as well as the recognition of teeth categories. Finally, according to the statistical optimal seed position, the two-dimensional seeds are calculated and mapped back to the three-dimensional space by the reverse projection transformation method to realize the final picking up of the three-dimensional seeds. Furthermore, combined with the previous work of division line detection, the automatic segmentation of the 3D dental model was realized. The experimental results show that the proposed method has high accuracy and real-time performance, which significantly reduces the burden of human-computer interaction in dental model segmentation.

Publisher

IGI Global

Subject

Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3