Affiliation:
1. The Hongkong Polytechnic University, Hong Kong
2. The Hong Kong Polytechnic University, Hong Kong
Abstract
This article describes a novel 3D image-based indoor localization system integrated with an improved SfM (structure from motion) approach and an obstacle removal component. In contrast with existing state-of-the-art localization techniques focusing on static outdoor or indoor environments, the adverse effects, generated by moving obstacles in busy indoor spaces, are considered in this work. In particular, the problem of occlusion removal is converted into a separation problem of moving foreground and static background. A low-rank and sparse matrix decomposition approach is used to solve this problem efficiently. Moreover, a SfM with RT (re-triangulation) is adopted in order to handle the drifting problem of incremental SfM method in indoor scene reconstruction. To evaluate the performance of the system, three data sets and the corresponding query sets are established to simulate different states of the indoor environment. Quantitative experimental results demonstrate that both query registration rate and localization accuracy increase significantly after integrating the authors' improvements.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献