Affiliation:
1. École de Technologie Supérieure, Canada
Abstract
The problem of balancing user requests in cloud computing is becoming more serious due to the variation of workloads. Load balancing and allocation processes still need more optimizing methodologies and models to improve performance and increase the quality of service. This article describes a solution to balance user workload efficiently by proposing a model that allows each virtual machine (VM) to maximize the serving number of requests based on its capacity. The model measures VMs' capacity as a percentage and maps groups of user requests to appropriate active virtual machines. Finding the expected patterns from a big data repository, such as log data, and using some machine learning techniques can make the prediction more efficiently. The work is implemented and evaluated using some performance metrics, and the results are compared with other research. The evaluation shows the efficiency of the proposed approach in distributing user workload and improving results.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献