Named Entity Recognition for Code Mixed Social Media Sentences

Author:

Sharma Yashvardhan1,Bhargava Rupal1,Tadikonda Bapiraju Vamsi1

Affiliation:

1. Birla Institute of Technology and Science, India

Abstract

With the increase of internet applications and social media platforms there has been an increase in the informal way of text communication. People belonging to different regions tend to mix their regional language with English on social media text. This has been the trend with many multilingual nations now and is commonly known as code mixing. In code mixing, multiple languages are used within a statement. The problem of named entity recognition (NER) is a well-researched topic in natural language processing (NLP), but the present NER systems tend to perform inefficiently on code-mixed text. This paper proposes three approaches to improve named entity recognizers for handling code-mixing. The first approach is based on machine learning techniques such as support vector machines and other tree-based classifiers. The second approach is based on neural networks and the third approach uses long short-term memory (LSTM) architecture to solve the problem.

Publisher

IGI Global

Subject

Pharmacology (medical)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3