A Fine-Grained Stateful Data Analytics Method Based on Resilient State Table

Author:

Ge Jike1,He Wenbo2,Chen Zuqin3,Liu Can3,Peng Jun3,Chen Guorong3

Affiliation:

1. College of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing, China

2. McMaster University, Toronto, Canada

3. Chongqing University of Science and Technology, Chongqing, China

Abstract

This article describes how stateful data analytic frameworks have emerged to provide fresh and low-latency results for big data processing. At present, it is desired to achieve the fine-grained data model in Spark data processing framework. However, Spark adopts coarse-grained data model in order to facilitate parallelization, it is challenging in dealing with the fine-grained data access in stateful data analytics. In this paper, the authors introduce a fine-grained stateful data component, Resilient State Table (RST), to Spark framework. For filling the gap between the coarse-grained data model in Spark and the fine-grained data access requirements in stateful data analytics, they devise the programming model of RST which interacts with Spark's coarse-grained memory representation seamlessly, and enable users to query/update the state entries in fine granularity with Spark-like programming interfaces. Performance evaluation experiments in various application fields demonstrate that their proposed solution achieves the improvements in latency, fault-tolerance, as well as scalability.

Publisher

IGI Global

Subject

Pharmacology (medical)

Reference32 articles.

1. Apache samza. Retrieved August 26, 2017, from http://samza.apache.org/

2. Incoop: MapReduce for incremental computations.;P.Bhatotia;Proceedings of the 2nd ACM Symposium on Cloud Computing,2011

3. HaLoop

4. Integrating scale out and fault tolerance in stream processing using operator state management

5. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., & Ng, A. Y. (2012). Large scale distributed deep networks. In Advances in neural information processing systems (pp. 1223-1231).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early detection of crypto-ransomware using pre-encryption detection algorithm;Journal of King Saud University - Computer and Information Sciences;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3