Discovering Attribute-Specific Features From Online Reviews

Author:

Jing Xiaonan1,Wang Penghao1,Rayz Julia M.1

Affiliation:

1. Purdue University, West Lafayette, USA

Abstract

This article describes how online reviews play an important role in data driven decision making. Many efforts have been invested in determining the overall sentiment carried by the reviews. However, oftentimes, the overall ratings of the reviews do not represent opinions toward specific attributes of a product. An ideal opinion mining tool should aim at finding both the product attributes and their corresponding opinions. The authors propose an approach for extracting the attribute specific features from online reviews using a Word2Vec model combined with clustering. Two experiments are described in this paper: the first focuses on testing the performance of the Word2Vec model on extracting product aspect words, the second addresses how well the extracted features obtained are recognizable by human cognition. A new metric called the “split value” that is based on cluster similarity and diversity is introduced to examine the consistency of clustering algorithm. The authors' experiments suggest that meaningful clusters, which provide insights to the product attributes and sentiments, could be extracted from the reviews.

Publisher

IGI Global

Subject

Pharmacology (medical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of emotional expression in online comments on consumers' perception;Journal of Ambient Intelligence and Humanized Computing;2021-09-12

2. Emotions and Spillover Effects of Social Networks Affective Well Being;Journal of Organizational and End User Computing;2021-09

3. Misspelling Correction with Pre-trained Contextual Language Model;2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC);2020-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3